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LIE’S THIRD THEOREM
FOR INTRANSITIVE LIE EQUATIONS

JOSE M. M. VELOSO

Introduction

In [4], H. Goldschmidt used the formalism developed by B. Malgrange
[9] to prove Lie’s third theorem in the context of transitive Lie algebras:
“If L, C Iy TRy, where k > 0, is a (k + 1)-truncated transitive
Lie algebra such that the symbol of L, ==, L, , is 3-acyclic, then there
exists a formally integrable analytic Lie equation R, C J, TR" such that
Rk+l,0 =L,

In this paper, we show that the above R, can be constructed without
using the Cartan-Kéhler theorem; our proof only requires Frebenius’ theo-
rem. Consequently, in the intransitive case, we are able to prove a version
of E. Cartan’s results [1] without assuming that the structure functions ¢, ik
and a; 2 are analytic.

Our main result is the following theorem, which we state here only in
the transitive case for simplicity.

Theorem. Suppose L, , C J, ., TR:J" , where kK > 0, is a (k + 2)-
truncated transitive Lie algebra. Then there exists a C™ vector sub-bundle
Ry € TR™ such that:

(1) Ry = (R,,,) isa vector sub-bundle of J TR"
(ii) [Rk+1 ’ Rk+1] c Rk;

(i) Ry i o=2Ly,;

(iV) Rk+1 - (Rk)+1

If the symbol of L, = n, L, , is 3-acyclic, then L, , can be prolonged
to L, ,. We know that all its prolongations are isomorphic, thus the as-
sumption in Goldschmidt’s theorem gives us a (k + 2)-truncated transitive
Lie algebra.

The equation R, in the Theorem may not be formally integrable (we
only know that 7, : (R,) ; — R, is surjective). However, when the sym-
bol of L, is 2-acyclic, Theorem 4.1 of Goldschmidt [2] implies that R,
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is formally integrable. Therefore Goldschmidt’s theorem can be obtained
as a consequence of our theorem.

To prove our result, we first consider the flat connection V on J,_, TR",
as in [4], defined by a section

w=dei®jk+3géj7,

1

ie., V&€ =[@®,¢] for & € £ ,7R". We construct R, ,, by taking the
parallel transport of L, ,. Then R, , , =L, ,,and [R,  , R ,]C

R, . Now we twist R, by a section ¢ € &_,, as in [4], so that the
new R, satisfies our condition (iv). To achieve this, we must solve the
equation

(%) P¢=-m,,, 0 modT ®R, .

In [4], the sophisticated Spencer operator is used. However, the first
nonlinear Spencer operator & seems to us to be more appropriate for
this problem because the bracket in L, 42 18 defined pointwise.

We associate to (*) the submanifold Sk+2 Q(l k42) - We prove that:
(1) the symbol of S¥*2 is the tensor product of T* and a vector bundle,
(2) the mapping 7, : (Sk+2) 1 K2 s surjective. Then our equation
may be solved using Frobenius’ theorem, as is shown in the Appendix.

To prove statement (2), we consider a section X € 552 and lift it to
Fe @y ey With T, Y O = %3 where S¥*° is defined in the same

way as Sh+? , replacing &k by k + 1. We show that
P(DVE =) (-1 @)+ — x,
where y € J/(T" ® R, ,,) and x € kero(Z,). The sequence
ST evQ,,, 2 e 0,7 22N N T 0 J,,, T
is not exact, but
mei(kero(2))) = o, (9)(S2T* ®Va, . ,);

hence there exists 4 € 29" ® 7°Q,,, such that ¢,(2)h = m,, x.
This explains why we must start from a (k + 2)-truncated Lie algebra
L,,, instead of one of order k + 1. Then X ==, , ,F +h is a section
of (S**%),, which proves (2).

The proof in the intransitive case follows the same lines. We only have
to add the hypothesis: L, , is defined on a submanifold N transverse
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to the orbits, and the restriction of the linear Spencer operator D to F#
sends %, into T4~ ®.%,_ .

In a separate paper, we shall define the intransitive Lie algebras, a notion
of isomorphism, and prove realization theorems analogous to those of
Guillemin-Sternberg [6].

Preliminaries

Throughout this paper, we shall use the notation of Malgrange [9] or of
Goldschmidt-Spencer [5], unless it is stated otherwise.

All the results are local. Let M be an open subset of R” containing
0, let (x',y’) be coordinates on A, and let H, V be sub—bundles
of T = TM such that H (resp. V') is generated by {9 /8x'} (resp.
{0/8y’}). /

We denote by J, V' the sub-bundle of J, T of k-jets of sections of V.
Then

D:/¢k+17 e 457 .

is defined by D¢ = [y, ] (see [9, Proposition 3.7]), where v = vy, + ¥,

and 3 5
wH—deébaxi, V/V—Zdy ®ayj.

The decomposition 7 = H @ V' induces a decomposition D =D, & D, ,
with D, ( %, 7)) C#Z* ® £,7 . It is easily verified that D ¢ = [y, &]
and D, ¢ = [y, ,]. We can extend D, to a mapping

Dy ©5, 7 ~ AN e AT
by ‘
(1) D (a®&) =dya®nsé+ (-1 andyé,

where again d =d,, +d,, . Also, D, extends in a similar way.

We denote by Q, (V') the manifold of k-jets of diffeomorphisms f of
M , which are equal to the identity mapping in the variables x, i.e., of the
form f(x,y) = (x, g(x,¥)). So Q.(V) is a submanifold of @, , and
we denote by Qk(W) the sheaf of invertible sections of Q, (V).

The first nonlinear Spencer operator

2. @~lc+2(7) T ®5.,7
acts on é}HZ(W) by
(2) DF=y-F'(y)
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(see [9, p. 520]). The formula (6.8) of [9] tells us that
(3) (ZF), = FON - fim F = il

where I, | is the identity section of Q, (V). Weidentify I,  , with M.

We can interpret this formula in the following way: j;nk 1 F and A'F (x)
define invertible linear maps from 7,Q, . (V) onto Tnk F(x) Qi (V), s0

(,IIF(x))_1 -j;nkHF is an endomorphism of 7,Q, (V) which induces
the identity on 7, M ; thus for v € T M we have

I()(DF), €V (V) =T Vs

i.e., v

(4) (W) (@F), =W Fx)" i, F-v-v.

The following formulas hold for & (5], [9]):

(5) D(GoF)=PF+F (2G), F,Ged ),
(6) D¢ =[DF, &+ (n, F)'(DF©), ¢e4,.7,
(7) DIF - \|DF,DF]=0,

where F() denotes the action of F on A " ® 7, 7 . If
DT @5, 7 > NF LY
is the operator defined by
(8) 91u=Du—%[u,u]
for ue 9" ® 7, ,(7"), then it follows from (7) that &, 2'F =0, so we
get the first nonlinear Spencer complex
~ x 2, .
®)  Gn@) (T 85,7 NT e AT,
which is exact ([9], [5]), where
(T"®J, V) ={ucT ®J, V:nu+id, € T" ® T is invertible} .
The operator & induces a surjective morphism
P@): Qy jury(V) = (T" @ T V)",

where Q@ , +2)(V) stands for the 1-jets of elements of ék (7). Tt fol-
lows from (3) that

1 - .1
(10) P@)X = (A'my 0, X) 7 0 (my 11 X) = Jnii s -
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The symbol of & is a mapping
0(P): T @VQ,,,(V)=»T " ®J, V.
Lemmal. If a®&eT, @V,Q, ,(V), then
(11) 0 @)@l =a® (Y ' 1,0,

where Y € Q, ,(V), a€T,, E€V,0,,,(V), and n(Y) =x.
Proof. Let X be an element of Q. k+2( ) such that =, , X =7,

and ue T, ® V,Q,_,(V). There exists a curve X, in Q) x42(V), such
that X, = X,

7I0,k+2Xt =7, %thmo =u
If »
Y T, 0@V =T 9@ (V);
we have
d d ~1
o(Du= ’T. (D)X\|\mo = E(}‘ ”0,k+2Xt) °© n],k+1Xt|t=D
= (}‘lY)_l ddtnl k1 Xilizo =y EUW T L

As a consequence of this lemma, we see that

0(2): ST eVQ, ,(V) T &T ®J, V

is determined by
(12) o (Z)a p®E=a-BRY (7%,

where o, B T, , € V,Q,,(V), Y € Q. ,(V),and n(Y) =x. We
associate to &, the morphism

p(<)): J( ®J

k+1

1

V - /\ T" ®JV
whose symbol

0(91):.J( ®J

2 ok
S V)= NT @JV
is'equal to o(D) and is given by
(13) 0(Z)(a@ B =anBOnL,

where o, €T and &€,V
The following lemma is easily verified.
Lemma2. [f XeJ(T"®J,_ V) and zeT"®T"®J,,,V, then

(14) P@)X+z)=p@)X+0(Y))z.
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Main theorem
Theorem. Suppose that L, , is a vector sub-bundle of (J;,
isfying:
@) oLy, =Vlys .
(b) Ly, =7 (Ly,,) is avector sub-bundle of (J,,V)|y for I =0, 1;
(©) [Lpyp» Lypl C [;k+1 ;
(d) DH: iﬂk+2 —& |/V®°<Zk+1 '
Then there exists a vector sub-bundle R;c +1 © Jyyy Such that
(i) R, =m,(Ry,,) isa vector sub-bundle of J,V ;
() Ry By] R
(1'11) R{c+l|N = {‘k+l )
(iv) Ry, C (R, -
Proof. We set

P i) * .
w=2dyj®]k+38_yj€<7 ®Z€+3%,

2V sat-

and we define the following (partial) flat connection (see [4,§3])
V2L Y =V 5,7
by ‘
(15) Vé=l[a, ]
for £ € 4.,,(77), where the bracket

[ 4 ]: Zc+37 x /¢k+2% —’/¢k+2%

is given by [9, (2.3)]. If & is a section of %, ,7" such that m,_,(&) =&,
then

We have
V(Vé) =, (@, <] =&, &],¢]-[&, [@, &]];

since [@, @] = 0, we see that V is flat. In the same way, we can define
connections V,_, on J, .,V intermsof w, ;. , =7, , (w) for /=0, 1.
It follows from Jacobi’s identity that

(17) Vials, n1=[VE, n+I<, Vnl,
where ¢, ne€ % _,7 . Let &, 1 <i<r,be abasis of sectionsof L,__,,
and let é; , 1 <i<r,be sections of £ ,7 such that

/
Ely=¢&, VE=0.
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Let R, , bethe sub-bundle of J k2 generated by the cf; ,1<i<r,and
set R, , =7, (Ry,,) for I =0,1. Then by (b), R, , is a sub-bundle
of J .,V for /=0, 1; also, we have

(18) V(Z,,,)CT ®F,,,.
Furthermore, we obtain from (17)
Venlé> E1=0,
and from (c),
(19) [Rk+2 ? Rk+2] - Rk+1 .
Lemma 3. Let u be an element N#~ ® 5, 7 satisfying
uye(NZ ©B,,,) 1, VueZ ANAT)OF,.

Then u belongsto N#* @ Z, ., .
Proof. Let,é; , 1 <i<s, be a basis of sections of 7 ,7", such that
cfl'., 1<i<r,isa basis of %k“, and Vaf;:O for 1<i<s. Then

$
u=3) o®%,
i=1
with ai=2fédxﬂ eANZ", and fl;(x,O) =0 for r < i <s. Therefore
N
Vu=EdVa[®§;

i=1

and by hypothesis

dya; =0, r<i<s.
This implies that _
. af
—iﬂ.=0, r<i<s.
ay’

Hence fé(x, y) = f;(x, 0)=0,r<i<s,and ue /\;7*@9?“2 . qed
On account of the equalities [y, v, 1= [y, @] =0 we obtain

V]H_](DHé;) = [WV + @y o [VIH s é;]]
=y, + @, wyl, E1= vy, v, + @, &
=-D,(VE) = 0.

It follows from hypothesis (d) that (DHcf;)| N E(F R, +1)|» > and from
Lemma 3 that D¢, € #° ® %,,, for 1 <i<r. Thus

(20) Dy(#,,,) CHZ @R, .
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We have finished the first step of the proof of the theorem, namely
constructing the vector bundle R, , satisfying properties (i), (ii), (iii),
and (20). Now, we are going to twist equation R, , by a section of

@, .»(7") such that (iv) holds for the twisted equation. If { € &%, _, , and

~

¢ €@, ,(7), it follows from (6) that
D) €T @y, H(F,)

+1°

if and only if

(21) DE-[D¢,(1€e T @Z,.

If ¢ is an element of & (7)), with ¢|y = j**id, for which (21)
holds for all & € %, ,,, then R, = #(R,,,) is a sub-bundle of J,_ (V)

satisfying the condition of the theorem. For { € %, , , we have

DE=Dyl+ Dyl =Dyl +m(V,,14) — o, ¢l
thus, by (18) and (20), we see that (21) is equivalent to

(22) [Z¢+w,,,E]=0 modT ®R,.
It follows from (19) that (22) holds for all { € %, | if
(23) D¢=-w,,, modT ®R,,,.

Thus it suffices to solve (23) for an element ¢ of @’1 (7)), with @]y =
K42 -
1d .

J
Set :
24) AM=(-o,,+T @R )N (T J V), I[=1,2.

We have —rjo+id =}, dx'®08/0x"  and by hypothesis (a), (R, ) =

V and AI;’[ # @ for every x € M. Furthermore, since (7" ® J, V)"

isopenin T"®J,,,V, we see that AxH

This implies that V4" = T" o R, ,.
Define

k
25) S =X e iV IP@)X 4

isopenin —w,,,+T ®R,,.

Hhooo1=1,2.

Then S**2 is the partial differential equation associated with the relation
(23). We will show the following:

(e) skt Qpi141(V) is surjective, for /=1, 2;

() 7y gt S 85 is surjective; '

(8) ($¥%%),, — $*** is surjective;
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2 2
Sk+ Sk+

(h) If g/{, is the symbol of
then

at the point X € ,with n(X) =x,

8 =T7 @ (M), (Mg XD Rey ).
From (g) and (h) and by the theorem of the Appendix, there isa ¢ €
é’k”(%) such that ¢|, = ]k+21d|N, and j'¢ € #**. Then R
®(R, ) satisfies the conditions of the theorem.
In the proof of (e)-(h), the following diagram will be useful; the dotted
vertical arrows represent affine actions:

B

k+1 —

* 4
ST eV, 2 T e T e,V
. \ - \ )
ST @V Q4 (V) e T V2L A T 9 g,V

k :
S, = Quitay ™)

l Q(z,kJia)(V)
Sk+2 — Q(I,k+2)(V) J ]

p(Z)
——

2(2) A p(.%
—

JI(T*®Jk+2V) A T’ ®Jk+l

k+3 . A
S Q1 k+3(V) (T"e®J.,,V) —— 0

Proof of (¢). The morphism

P(D): O iy V) = (T" @ T V)

k+

is surjective and has constant rank, and A is a submanifold of

(T"®J i V)" . Hence

(26) Sk+l+1 _ p(@)—l(AkH)

is a submanifold of @ ., (V). From (5), we see that
P@)H o X) =p(@)X + (X' X)” (p(D)H).

If p(@YX=h=p(@)HoX), then p(Z)H =0, so

(27) P(@) " (B) = Qs (V) gixy 0 X s

where f: Q,,.,(X) — X is the “target” projection. When X € §*7'*!,
Sk+l+1

1

we have Q, /., (V)pxoX C

Proof of (f). If X € Sk+2, then 4 = p(2)X € A Let & be an
element of 4™ such that nk+l(7z) = & . Then there is an X € S*** such
that p(2)X = h, so that p(2) ' (h) = Qk+4(V) ;o X . Hence we have

T k2 Qera(M) g X) = 7y 4 n(0(2) h) = p(@)“h Qrs(V) o X
which implies (f).

which implies (e).
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Proof of (g). Take X € #**2  We must show there exists X €
(LVkJ'z)Jr1 with ”1,k+2(X) = X . It follows from (f) that there is an ele-
ment F of #*** such that T, r4oF =X, hence p(P)F = —w; ,+6,
with 6 €7*®%,,,. Choose F €@y 143\(7) satisfying =, wisk =F.
Then

ny(p(D)F) =p(D)F = -, +6.

If z=p,(D)F - j'(-m,,,0+0), then ze T ®5"®.%,,7 and
0(2,)z = p(Z,)(0,(2)F) - P(Z)(J (~0y, +0)) = =D (~w0, ,, + 0)
= Doy, + 53[0, ,,, 0,1 — (DO +[wy,,, 6]) + 310, 1,
by (14). By the choice of w, we have
Do,y = 3[04 155 0] =0
It follows from (16), (18), and (20) that
DO +[w,,,,01=D,0+7,, (VO eNT %,
and from (19) that

+12

116,601 N’ © %, ,,
Thus
0(2)ze NI ©%,,,

By (13) wesee that 0(2,): T I @F),, — /\2‘7*&%@1 is surjective,
and so there exists y €9 ® 9" ® %,,, such that

a(<,))y =0(¥))z or o(Z)y~2z)=0.
The sequence
28) S’T 0V Q,,,(V) 2L T e T 04,V Z2L AT 0 J,, V
is not exact. From (13), it follows that
kera(2,) = (S’ T" @ J V) +(T T ST o V),

so that ,
T, V-2)eFT Q5.7
Using (12) we obtain that

(DYS'T @V Q) =S'T @,V
hence there exists # € 2T @ 7 @, ,,(¥), with
hX)eS'TI®V, 4@V

o k+2
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for all x € M, such that o(Z)h=mn,,,(y —2). Set X en, , ,F +h.
Then 7, , ,(X) =7, , ,(F)=X,and '
pl(g)X = p](g)(nz,k.;,zﬁ) + G‘l(g)h
=7y 4t O{DVE) + 7 (v = 2)
1
= nl,k+l(] (_wk+2 +0)+2)+ nk+2(y - z)
= —jlwk+1 +jlnk+10 +y;
hence .
(@)X =—jw,, mod (I Q%)
and X € (&%) .1 » which proves (g).
Proof of (h). Denote the canonical projection by
p: T &J V(T WN/IT ®R,,).
Then s |
+ p—
ST =1pop(@)] (p(-w,y),
and therefore
gl =kerpoa(2D)
(cf. [3]), i.e., if X € S5, then

1 * *
gX = {h S Tx ® V;tkaH(X)Q]H_z(V)la(g)h € Tx ®Rk+1,x} *

From (11) it thus follows that
1 * k+2,~1
gX = Tx ® (nkil)* ((”o,k+2X) oRk+1,x) .

Corollary. In the hypothesis of the theorem, suppose furthermore that
h, = {¢ € L,|n,_,&=0} is 2-acyclic at every point x € N. Then R, is
formally integrable.

Proof. We must show that g, = {¢ € Ri|x,_,& = 0} is 2-acyclic.
We know g, |y = h,. Applying an argument of [4] (cf. Remarque after
Proposition 5.3), adapted to the intransitive case, we get

Hk+l,j(gk)(x,y) = Hk+1,j(hk)(x,0)'

Hence g, is 2-acyclic. Now, from Theorem 4.1 of [2], it follows that R,
is formally integrable.

Appendix

We prove here a generalization of Theorem 5.1 of [8] which we state in
a simplified form.
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Let n: E — M be a fibered manifold, where dimM = m and dim E =
m+n . The manifold J E of l-jets of sections of (E, M, x) has dimen-

sion m+n+mn. If (xi , yj) is a fibered chart of F, then (xi, yj, p{)
is a chart for J E, where

af

J,o.l

p; (Jaf) = ﬁ(a)’
and f = (f', -+, f") is a section of (E, M, n). We denote x =
(-xl"" 7-xm)7 y=(y17 7yn)aand p]::(pfa 7p:n)

If we denote V,J, E = ker(rn,), , then it is well known ([8]) that

V,JJE 5 T QVE,

1

Theorem. Suppose R, C J E is a system of partial differential equa-
tions such that:

(1) (R,),, =% R, is surjective,

(2) mo(R) =E;

(3) the symbol g, = (VoJ,E)NTR, of R, isequal to T" ® F, where
F s a vector sub-bundle of VE.

Then, for every X € R, o+ A€M, there exists a solution f of R, such

that j al f =X, and this solution depends arbitrartly on r functions, where
r is the dimension of F .
Proof. Choose a chart on E such that F, is generated by

5} 0
W(G),“' > 5y

Choose {¢, |0 € X, ¢_: JJE — R}, with d¢, linearly independent, such
that

R, ={X€eJE|l¢p,(X)=0,0€X}.
Clearly, Z has m(n —r) elements. Let
n—r m B
v=> Y a —Ia)
J=1 i=1 lapi/

be an element of VjJ,E. Then v € VR, if and only if the linear system
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m

Z =0

i=1

has only the trivial solution a{ =0; thus

3¢

ccZX, 1<i<m,1<j<n-r,isan invertible matrix. The implicit
function theorem allows us to replace {¢ »» 0 €L} by

n

r

IIM

n—r+l

{¢1=Plj—¥’,j(xay“0 s"')pn)’ lslsma ISan—r}-

For every X € R, ,, we choose r functions " Nx), -+, fM(x) such

that y*(X) = f¥(a) and p¥(X)= (85 /0x")(a) for 1<i<m, n—-r<
k<n.Set

S 1 I
¢f=p,-’—w{<x,y,---,y"',f"”(X),-'-,f”(X),

8fn——r+l 8f

1<i<m, 1<j<n-r.

This is a Frobenius system and its integrability conditions are a con-
sequence of hypothesis (1) (cf. the proof of Theorem 5.1 of [8]). If
(f'x), -+, f77(x)) is a solution of ¢ = 0, such that y’(X) = f/(a)
and p!(X)=(8/'/8x')(a), then (f',---, f) is a solution of R'. The
same proof works when the initial data is well posed on a submanifold of
M.
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